Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 633658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012432

RESUMO

Systemic lupus erythematosus (SLE) is a severe autoimmune disease of unknown etiology. The major histocompatibility complex (MHC) class I-related chain A (MICA) and B (MICB) are stress-inducible cell surface molecules. MICA and MICB label malfunctioning cells for their recognition by cytotoxic lymphocytes such as natural killer (NK) cells. Alterations in this recognition have been found in SLE. MICA/MICB can be shed from the cell surface, subsequently acting either as a soluble decoy receptor (sMICA/sMICB) or in CD4+ T-cell expansion. Conversely, NK cells are frequently defective in SLE and lower NK cell numbers have been reported in patients with active SLE. However, these cells are also thought to exert regulatory functions and to prevent autoimmunity. We therefore investigated whether, and how, plasma membrane and soluble MICA/B are modulated in SLE and whether they influence NK cell activity, in order to better understand how MICA/B may participate in disease development. We report significantly elevated concentrations of circulating sMICA/B in SLE patients compared with healthy individuals or a control patient group. In SLE patients, sMICA concentrations were significantly higher in patients positive for anti-SSB and anti-RNP autoantibodies. In order to study the mechanism and the potential source of sMICA, we analyzed circulating sMICA concentration in Behcet patients before and after interferon (IFN)-α therapy: no modulation was observed, suggesting that IFN-α is not intrinsically crucial for sMICA release in vivo. We also show that monocytes and neutrophils stimulated in vitro with cytokines or extracellular chromatin up-regulate plasma membrane MICA expression, without releasing sMICA. Importantly, in peripheral blood mononuclear cells from healthy individuals stimulated in vitro by cell-free chromatin, NK cells up-regulate CD69 and CD107 in a monocyte-dependent manner and at least partly via MICA-NKG2D interaction, whereas NK cells were exhausted in SLE patients. In conclusion, sMICA concentrations are elevated in SLE patients, whereas plasma membrane MICA is up-regulated in response to some lupus stimuli and triggers NK cell activation. Those results suggest the requirement for a tight control in vivo and highlight the complex role of the MICA/sMICA system in SLE.


Assuntos
Membrana Celular/imunologia , Antígenos de Histocompatibilidade Classe I/sangue , Células Matadoras Naturais/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária , Anticorpos Antinucleares/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Células Matadoras Naturais/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Nucleossomos/imunologia , Nucleossomos/metabolismo , Fenótipo , Ribonucleoproteínas/imunologia , Síndrome de Sjogren/sangue , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/imunologia , Regulação para Cima
2.
Front Immunol ; 12: 613597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746957

RESUMO

Increased concentrations of circulating chromatin, especially oligo-nucleosomes, are observed in sepsis, cancer and some inflammatory autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, circulating nucleosomes mainly result from increased apoptosis and decreased clearance of apoptotic cells. Once released, nucleosomes behave both as an autoantigen and as a damage-associated molecular pattern (DAMP) by activating several immune cells, especially pro-inflammatory cells. Deoxyribonuclease 1 (DNase1) is a major serum nuclease whose activity is decreased in mouse and human lupus. Likewise, the mitochondrial chaperone tumor necrosis factor (TNF) receptor-associated protein-1 (Trap1) protects against oxidative stress, which is increased in SLE. Here, using wild type, DNase1-deficient and DNase1/Trap1-deficient mice, we demonstrate that DNase1 is a major serum nuclease involved in chromatin degradation, especially when the plasminogen system is activated. In vitro degradation assays show that chromatin digestion is strongly impaired in serum from DNase1/Trap1-deficient mice as compared to wild type mice. In vivo, after injection of purified chromatin, clearance of circulating chromatin is delayed in DNase1/Trap1-deficient mice in comparison to wild type mice. Since defective chromatin clearance may lead to chromatin deposition in tissues and subsequent immune cell activation, spleen cells were stimulated in vitro with chromatin. Splenocytes were activated by chromatin, as shown by interleukin (IL)-12 secretion and CD69 up-regulation. Moreover, cell activation was exacerbated when Trap1 is deficient. Importantly, we also show that cytokines involved in lupus pathogenesis down-regulate Trap1 expression in splenocytes. Therefore, combined low activities of both DNase1 and Trap1 lead to an impaired degradation of chromatin in vitro, delayed chromatin clearance in vivo and enhanced activation of immune cells. This situation may be encountered especially, but not exclusively, in SLE by the negative action of cytokines on Trap1 expression.


Assuntos
Cromatina/metabolismo , Citocinas/biossíntese , Desoxirribonuclease I/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mediadores da Inflamação/metabolismo , Animais , Desoxirribonuclease I/sangue , Espaço Extracelular , Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Leucócitos/metabolismo , Leucócitos/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Knockout , Baço/citologia , Baço/metabolismo
3.
Arthritis Rheumatol ; 72(4): 576-587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31609517

RESUMO

OBJECTIVE: To study the involvement of Treg cells expressing tumor necrosis factor receptor type II (TNFRII) in exerting control of inflammation in experimental models and in the response to anti-TNF treatments in patients with rheumatoid arthritis (RA) or spondyloarthritis (SpA). METHODS: The role of TNFRII in Treg cells was explored using a multilevel translational approach. Treg cell stability was evaluated by analyzing the methylation status of the Foxp3 locus using bisulfite sequencing. Two models of inflammation (imiquimod-induced skin inflammation and delayed-type hypersensitivity arthritis [DTHA]) were induced in TNFRII-/- mice, with or without transfer of purified CD4+CD25+ cells from wild-type (WT) mice. In patients with RA and those with SpA, the evolution of the TNFRII+ Treg cell population before and after targeted treatment was monitored. RESULTS: Foxp3 gene methylation in Treg cells was greater in TNFRII-/- mice than in WT mice (50% versus 36.7%). In cultured Treg cells, TNF enhanced the expression, maintenance, and proliferation of Foxp3 through TNFRII signaling. Imiquimod-induced skin inflammation and DTHA were aggravated in TNFRII-/- mice (P < 0.05 for mice with skin inflammation and P < 0.0001 for mice with ankle swelling during DTHA compared to WT mice). Adoptive transfer of WT mouse Treg cells into TNFRII-/- mice prevented aggravation of arthritis. In patients with RA receiving anti-TNF treatments, but not those receiving tocilizumab, the frequency of TNFRII+ Treg cells was increased at 3 months of treatment compared to baseline (mean ± SEM 65.2 ± 3.1% versus 49.1 ± 5.5%; P < 0.01). In contrast, in anti-TNF-treated patients with SpA, the frequency of TNFRII+ Treg cells was not modified. CONCLUSION: TNFRII expression identifies a subset of Treg cells that are characterized by stable expression of Foxp3 via gene hypomethylation, and adoptive transfer of TNFRII-expressing Treg cells ameliorates inflammation in experimental models. Expansion and activation of TNFRII+ Treg cells may be one of the mechanisms by which anti-TNF agents control inflammation in RA, but not in SpA.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Adulto , Idoso , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores Tipo II do Fator de Necrose Tumoral/genética , Espondilartrite/tratamento farmacológico , Espondilartrite/metabolismo , Inibidores do Fator de Necrose Tumoral/farmacologia
4.
Antivir Ther ; 23(8): 665-675, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30028308

RESUMO

BACKGROUND: Cacicol®, a topical eye biopolymer containing a poly-carboxymethylglucose sulfate solution that is a regenerating matrix therapy agent, intended for wound healing of persistent corneal epithelial defects. Based on the chemical composition, we hypothesized that Cacicol® may compete with natural heparan sulfate (HS) which initiates cell surface attachment of herpes simplex virus type-1 (HSV-1), varicella zoster virus (VZV) and human adenovirus (HAdV), three viruses associated with corneal infections. METHODS: Cacicol® was compared to vehicle in the following viral strains: HSV-1 SC16 strain and HSV-1 PSLR, a clinical isolate highly resistant to acyclovir and foscarnet; VZV ATH and VZV FLO, two VZV clinical isolates; and HAdV-D37 strain. Viruses in Cacicol® or vehicle were added to cells for 1 h during adsorption then viral replication was assessed by plaque reduction assays on Vero cells for HSV-1 and MeWo cells for VZV and by immunostaining assay on Hep-2 cells for HAdV-D37. RESULTS: The vehicle had no effect, dose-dependent effects were demonstrated when HSV-1 SC16, HSV-1 PSLR, VZV ATH and VZV FLO were inoculated in the presence of Cacicol®, inhibiting viral replication by 98.4%, 98.9%, 90.1% and 89.0%, respectively. Cacicol® had no antiviral effect against HAdV-D37. CONCLUSIONS: Cacicol® has a significant antiviral activity on HSV-1 and VZV, but not on HAdV-D37. The lack of effect on HAdV is probably because it is less dependent on HS interactions for cell entry. Clinical studies are necessary to determine Cacicol® for an adjunct or alternative therapy of corneal HSV-1 or VZV infection, particularly for the management of antiviral resistant HSV-1.


Assuntos
Antivirais/administração & dosagem , Heparitina Sulfato/administração & dosagem , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 3/efeitos dos fármacos , Ceratite Herpética/virologia , Regeneração , Animais , Materiais Biomiméticos , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ceratite Herpética/diagnóstico , Ceratite Herpética/tratamento farmacológico , Células Vero , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
5.
Circulation ; 131(4): 390-400; discussion 400, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25369805

RESUMO

BACKGROUND: Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and is regulated by various signaling pathways. However, the molecular mechanisms that negatively regulate these signal transduction pathways remain poorly understood. METHODS AND RESULTS: Here, we characterized Carabin, a protein expressed in cardiomyocytes that was downregulated in cardiac hypertrophy and human heart failure. Four weeks after transverse aortic constriction, Carabin-deficient (Carabin(-/-)) mice developed exaggerated cardiac hypertrophy and displayed a strong decrease in fractional shortening (14.6±1.6% versus 27.6±1.4% in wild type plus transverse aortic constriction mice; P<0.0001). Conversely, compensation of Carabin loss through a cardiotropic adeno-associated viral vector encoding Carabin prevented transverse aortic constriction-induced cardiac hypertrophy with preserved fractional shortening (39.9±1.2% versus 25.9±2.6% in control plus transverse aortic constriction mice; P<0.0001). Carabin also conferred protection against adrenergic receptor-induced hypertrophy in isolated cardiomyocytes. Mechanistically, Carabin carries out a tripartite suppressive function. Indeed, Carabin, through its calcineurin-interacting site and Ras/Rab GTPase-activating protein domain, functions as an endogenous inhibitor of calcineurin and Ras/extracellular signal-regulated kinase prohypertrophic signaling. Moreover, Carabin reduced Ca(2+)/calmodulin-dependent protein kinase II activation and prevented nuclear export of histone deacetylase 4 after adrenergic stimulation or myocardial pressure overload. Finally, we showed that Carabin Ras-GTPase-activating protein domain and calcineurin-interacting domain were both involved in the antihypertrophic action of Carabin. CONCLUSIONS: Our study identifies Carabin as a negative regulator of key prohypertrophic signaling molecules, calcineurin, Ras, and Ca(2+)/calmodulin-dependent protein kinase II and implicates Carabin in the development of cardiac hypertrophy and failure.


Assuntos
Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Proteínas Ativadoras de GTPase/biossíntese , Genes ras/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais/fisiologia
6.
Biochem Soc Trans ; 40(1): 51-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260665

RESUMO

Epacs (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors for the Ras-like small GTPases Rap1 and Rap2. Epacs were discovered in 1998 as new sensors for the second messenger cAMP acting in parallel to PKA (protein kinase A). As cAMP regulates many important physiological functions in brain and heart, the existence of Epacs raises many questions regarding their role in these tissues. The present review focuses on the biological roles and signalling pathways of Epacs in neurons and cardiac myocytes. We discuss the potential involvement of Epacs in the manifestation of cardiac and central diseases such as cardiac hypertrophy and memory disorders.


Assuntos
Encéfalo/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Diferenciação Celular , Proliferação de Células , Doenças do Sistema Nervoso Central/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Coração/fisiopatologia , Cardiopatias/metabolismo , Humanos , Miocárdio/metabolismo , Miocárdio/patologia
7.
Curr Heart Fail Rep ; 8(3): 159-67, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21594764

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP) mediates the biological effects of various hormones and neurotransmitters. Stimulation of cardiac ß-adrenergic receptors (ß-AR) via catecholamines leads to activation of adenylyl cyclases and increases cAMP production to enhance myocardial function. Because many other receptors signaling through cAMP generation exist in cardiac myocytes, a central question is how different hormones induce distinct cellular responses through the same second messenger. A large body of evidence suggests that the localization and compartmentalization of ß-AR/cAMP signaling affects the net outcome of biological functions. Spatiotemporal dynamics of cAMP action is achieved by various proteins, including protein kinase A (PKA), phosphodiesterases, and scaffolding proteins such as A-kinase-anchoring proteins. In addition, the discovery of the cAMP target Epac (exchange proteins directly activated by cAMP), which functions in a PKA-independent manner, represents a novel mechanism for governing cAMP-signaling specificity. Aberrant cAMP signaling through dysregulation of ß-AR/cAMP compartmentalization may contribute to cardiac remodeling and heart failure.


Assuntos
AMP Cíclico/fisiologia , Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Insuficiência Cardíaca/metabolismo , Humanos , Diester Fosfórico Hidrolases/fisiologia , Receptores Adrenérgicos beta/metabolismo , Receptores CCR10/fisiologia , Transdução de Sinais/fisiologia
8.
Cell Signal ; 23(8): 1257-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21402149

RESUMO

Epac proteins respond to the second messenger cyclic AMP (cAMP) and are activated by Gs coupled receptors. They act as specific guanine nucleotide exchange factors (GEFs) for the small G proteins, Rap1 and Rap2 of the Ras family. A plethora of studies using 8-pCPT-2'-O-Me-cAMP, an Epac agonist, has revealed the importance of these multi-domain proteins in the control of key cellular functions such as cell division, migration, growth and secretion. Epac and protein kinase A (PKA) may act independently but are often associated with the same biological process, in which they fulfill either synergistic or opposite effects. In addition, compelling evidence is now accumulating about the formation of molecular complexes in distinct cellular compartments that influence Epac signaling and cellular function. Epac is spatially and temporally regulated by scaffold protein and its effectors are interconnected with other signaling pathways. Pathophysiological changes in Epac signaling may underlie certain diseases.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , Proteínas rap de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
9.
Cell Signal ; 22(10): 1459-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20576488

RESUMO

Epac (Exchange protein directly activated by cAMP) is a sensor for cAMP and represents a novel mechanism for governing cAMP signalling. Epac is a guanine nucleotide exchange factor (GEF) for the Ras family of small GTPases, Rap. Previous studies demonstrated that, in response to a prolonged beta-adrenergic stimulation Epac induced cardiac myocyte hypertrophy. The aim of our study was to further characterize Epac downstream effectors involved in cardiac myocyte growth. Here, we found that Epac led to the activation of the small G protein H-Ras in primary neonatal cardiac myocytes. A Rap GTPase activating protein (RapGAP) partially inhibited Epac-induced H-Ras activation. Interestingly, we found that H-Ras activation involved the GEF domain of Epac. However, Epac did not directly induce exchange activity on this small GTPase protein. Instead, the effect of Epac on H-Ras activation was dependent on a signalling cascade involving phospholipase C (PLC)/inositol 1,3,5 triphosphate receptor (IP3R) and an increase intracellular calcium. In addition, we found that Epac activation induced histone deacetylase type 4 (HDAC4) translocation. Whereas HDAC5 alone was unresponsive to Epac, it became responsive to Epac in the presence of HDAC4 in COS cells. Consistent with its effect on HDAC cytoplasmic shuttle, Epac activation also increased the prohypertrophic transcription factor MEF2 in a CaMKII dependent manner in primary cardiac myocytes. Thus, our data show that Epac activates a prohypertrophic signalling pathway which involves PLC, H-Ras, CaMKII and HDAC nuclear export.


Assuntos
Núcleo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Histona Desacetilases/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Cálcio/metabolismo , Cardiomegalia/metabolismo , Domínio Catalítico , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fatores de Transcrição MEF2 , Miócitos Cardíacos/enzimologia , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição NFATC/metabolismo , Ratos , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...